Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Daniel E. Lynch ${ }^{\text {a* }}$ and Ian McClenaghan ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ School of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and ${ }^{\text {b }}$ Key Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, England

Correspondence e-mail:
apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.047$
$w R$ factor $=0.124$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Amino-4-(4-chlorophenylthio)-5-phenyl-6-(1-piperidyl)pyrimidine

The structure of the title compound, $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{~S}$, comprises a fully substituted pyrimidine ring that packs in a 2 -amino-pyrimidine-type hydrogen-bonded polymer chain. However, hindrance from the chlorophenylthio group, in turn altered by the presence of the phenyl ring, creates a convoluted hydrogen-bonded chain. The dihedral angle between the thiophenyl and pyrimidine rings is $70.10(7)^{\circ}$, while the dihedral angle between the phenyl and pyrimidine rings is 56.14 (8) ${ }^{\circ}$. Neither the S nor the Cl atoms is involved in the hydrogen-bonding network.

Comment

We recently discussed the occurrence of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogenbonding associations in a series of nine 2 -amino-4-sulfursubstituted pyrimidines (Lynch et al., 2002). In the packing motifs of the ten structures studied (one compound had two polymorphs), all displayed $R_{2}{ }^{2}(8)$ hydrogen-bonded 2-aminopyrimidine dimers, to varying degrees of polymerization, whereas six packing modes additionally included $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{S}$ interactions, the majority being three-centre with an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interaction. The title compound, (I), prepared by the sequential addition of piperidine and 4-chlorothiophenol to 2-amino-5-phenylpyrimidine, has the appropriate S-substituent to be compared with these previously studied pyrimidine structures.

(I)

In (I), the presence of the 5-phenyl ring prevents the thiophenyl group from taking on a similar conformation to that in 2-amino-4-(4-chlorophenylthio)-6-morpholinopyrimidine, in which the direction of the thiophenyl group opposes that of the pyrimidine N atoms. Instead, the thiophenyl group adopts a conformation that turns it towards the heterocyclic N atoms (Fig. 1). The dihedral angle between the 5-phenyl and pyrimidine rings is $56.14(8)^{\circ}$, while the dihedral angle between the thiophenyl and pyrimidine rings is $70.10(7)^{\circ}$. Previously reported 2-amino-5-phenylpyrimidine-type structures, and the dihedral angles between their 5-phenyl and pyrimidine rings, are 2,4-diamino-5-($3^{\prime}, 4^{\prime}$-dichlorophenyl)-6-methylpyrimidinium ethanesulfonate [71.7 (1) ${ }^{\circ}$; Cody, 1983], 2,4-diamino-5-(3', 4'-dichlorophenyl)-6-methylpyrimidine [78.2 (5) and $88.4(5)^{\circ}$; De et al., 1989] and methyl-

Received 3 January 2003
Accepted 16 January 2003
Online 24 January 2003

Figure 1
The molecular configuration and atom-numbering scheme for the title compound, showing ellipsoids at the 50% probability level.

Figure 2
Partial packing diagram for the title compound, showing the convoluted 2-aminopyrimidine hydrogen-bonded chain.
benzoprim [75.4 (2) and 73.5 (2) ${ }^{\circ}$; Denny et al., 1992]. The latter two compounds have two independent molecules in the asymmetric unit.

Hindrance from the 5-phenyl ring to neighbouring molecules and the conformation of the thiophenyl ring not only prevent any hydrogen-bonding associations to the S atom, but the latter also causes the resultant 2 -aminopyrimidine hydrogen-bonded polymer chain to be convoluted (Fig. 2), similar to the packing of both 2-amino-4-chloro-6-(4-fluoro-
phenylthio)pyrimidine and 2-amino-4-[4-(2,3-dimethyl-phenyl)piperazino]-6-phenylthiopyrimidine (Lynch et al., 2002). However, the hydrogen-bonding pattern for (I) (Table 1) does differ from these two aforementioned structures in that there is a three-centre association from one 2 -amino H atom to both the adjacent pyrimidine N atom and the adjacent 2 -amino N atom. This is due to the high angle ($c a 90^{\circ}$) in which the 2-aminopyrimidines approach each other to form the hydrogen-bonded chain, thus allowing one 2-amino H atom closer to both N atoms and not just the pyrimidine N . Such a high angle of incidence is due to hindrance from both the thiophenyl and piperidyl substituents, because in lessersubstituted 2 -aminopyrimidines any resultant hydrogenbonded chains have a high likelihood of being essentially planar. In this respect, it is surprising that the packing network of (I) displays any $R_{2}{ }^{2}(8)$ dimers, let alone a full chain, especially when the Cl atom is available for hydrogen-bonding associations in an unhindered position [compare this with the structure of 2-amino-4-(4-(2-ethoxyphenyl)piperazino)-6-(4chlorophenylthio)pyrimidine in Lynch et al. (2002)].

Experimental

The title compound was obtained from Key Organics Ltd and crystals were grown from an ethanol solution.

Crystal data
$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{~S}$
$M_{r}=396.93$
Monoclinic, $P 2_{d} / c$
$a=14.645$ (3) A
$b=6.4302(13) \AA$
$c=20.954$ (4) \AA
$\beta=98.67$ (3) ${ }^{\circ}$
$V=1950.8(7) \AA^{3}$
$Z=4$
$D_{x}=1.351 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9868 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Plate, colourless
$0.40 \times 0.12 \times 0.02 \mathrm{~mm}$
Data collection
Bruker Nonius KappaCCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.884, T_{\text {max }}=0.994$
14972 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.124$
$S=1.09$
3422 reflections
252 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$1.00(3)$	$2.17(3)$	$3.130(3)$	$160(2)$
$\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{~N} 21^{\mathrm{i}}$	$1.00(3)$	$2.63(3)$	$3.219(3)$	$118(2)$
$\mathrm{N} 21-\mathrm{H} 22 \cdots \mathrm{~N} 3^{\text {ii }}$	$0.88(3)$	$2.19(3)$	$2.978(3)$	$150(2)$

Symmetry codes: (i) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

All H atoms were included in the refinement, at calculated positions, in the riding model approximation, with $\mathrm{C}-\mathrm{H}$ set at $0.95(\mathrm{Ar}-$ H) and $0.99 \AA\left(\mathrm{CH}_{2}\right)$, while the isotropic displacement parameters were set equal to $1.25 U_{\text {eq }}(\mathrm{C})$, except for the 2 -amino H atoms, which were located in a difference synthesis and for which both positional and displacement parameters were refined. The high $R_{\text {int }}$ value of 0.105 is the result of weak high-angle data.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and $C O L L E C T$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service (Southampton).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
Cody, V. (1983). Cancer Biochem. Biophys. 6, 173-177.
De, A., Basak, A. K. \& Roychowdhury, P. (1989). Indian J. Phys. Sect. A, 63, 553-563.
Denny, B. J., Ringan, N. S., Schwalbe, C. H., Lambert, P. A., Meek, M. A., Griffin, R. J. \& Stevens, M. F. G. (1992). J. Med. Chem. 35, 2315-2320.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Lynch, D. E., McClenaghan, I., Light, M. E. \& Coles, S. J. (2002). Cryst. Eng. 5, 79-94.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1994). PLUTON94. University of Utrecht, The Netherlands.
Spek, A. L. (1997). PLATON97. University of Utrecht, The Netherlands.

